All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars
 perplexus dot info

 Numerous Numeral Enumeration (Posted on 2011-03-20)
(A) Determine the total number of ways in which 102010(base ten) is expressible as the product of:

(I) Four distinct positive integers arranged in increasing order of magnitude.

(II) Five distinct positive integers arranged in increasing order of magnitude.

(III) Six distinct positive integers arranged in increasing order of magnitude.

(B) What are the respective answers to each of (I), (II) and (III) in part-(A), if 102010(base ten) is replaced by 102010(base 12)?

 No Solution Yet Submitted by K Sengupta Rating: 4.5000 (2 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
 re(3): Initial thoughts. | Comment 7 of 10 |
(In reply to re(2): Initial thoughts. by Jer)

I agree it doesn't keep the numbers distinct. I was really thinking more in the context of the current problem which is a power of a composite number, where the other prime's power would supply the distinctness, and falsely attributed this to an equivalent prime power problem.
 Posted by Charlie on 2011-03-21 16:07:35

 Search: Search body:
Forums (0)