All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Different Digits (Posted on 2003-12-28) Difficulty: 3 of 5
Different letters represent different numbers and none of them is equal to zero.

  NOSIER
+ ASTRAL
  725613
What word does the final result represent ?

See The Solution Submitted by Ravi Raja    
Rating: 3.2857 (7 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
re: Solution | Comment 2 of 14 |
(In reply to Solution by e.g.)

I agree there are probably more elegant methods, but even with an inelegant method, a solution is more than just the answer. Here's my solution in the form of a program, which had taken me more time to write than the 8 minutes e.g. took.

DECLARE SUB permute (a$)
CLS
a1$ = "nosier"
a2$ = "astral"
tr$ = "nosieratl"
FOR perm = 1 TO 362880
 v1$ = a1$
 FOR i = 1 TO LEN(v1$)
   MID$(v1$, i, 1) = LTRIM$(STR$(INSTR(tr$, MID$(v1$, i, 1))))
 NEXT
 v2$ = a2$
 FOR i = 1 TO LEN(v2$)
   MID$(v2$, i, 1) = LTRIM$(STR$(INSTR(tr$, MID$(v2$, i, 1))))
 NEXT
 t = VAL(v1$) + VAL(v2$)
 IF t = 725613 THEN
  PRINT "123456789"
  PRINT tr$
  s1$ = ""
  FOR i = 1 TO LEN("725613")
    s1$ = s1$ + MID$(tr$, VAL(MID$("725613", i, 1)), 1)
  NEXT
  PRINT s1$
  PRINT
 END IF
 permute tr$
NEXT

SUB permute (a$)
DEFINT A-Z
 x$ = ""
 FOR i = LEN(a$) TO 1 STEP -1
  l$ = x$
  x$ = MID$(a$, i, 1)
  IF x$ < l$ THEN EXIT FOR
 NEXT

 IF i = 0 THEN
  FOR j = 1 TO LEN(a$) \ 2
   x$ = MID$(a$, j, 1)
   MID$(a$, j, 1) = MID$(a$, LEN(a$) - j + 1, 1)
   MID$(a$, LEN(a$) - j + 1, 1) = x$
  NEXT
 ELSE
  FOR j = LEN(a$) TO i + 1 STEP -1
   IF MID$(a$, j, 1) > x$ THEN EXIT FOR
  NEXT
  MID$(a$, i, 1) = MID$(a$, j, 1)
  MID$(a$, j, 1) = x$
  FOR j = 1 TO (LEN(a$) - i) \ 2
   x$ = MID$(a$, i + j, 1)
   MID$(a$, i + j, 1) = MID$(a$, LEN(a$) - j + 1, 1)
   MID$(a$, LEN(a$) - j + 1, 1) = x$
  NEXT
 END IF
END SUB

It found


123456789
tnsaleiro
inlets

-----
the first two lines being the full number-to-letter encoding.
Edited on December 28, 2003, 10:16 am
  Posted by Charlie on 2003-12-28 10:15:20
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (8)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2017 by Animus Pactum Consulting. All rights reserved. Privacy Information