All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars
 perplexus dot info

 Duodecimal Digits (Posted on 2011-09-22)
Determine the possible nonzero units digits of a duodecimal positive integer n such that:

Each of n and n+2 is a prime number, and:

n+2 is expressible as the sum of squares of two positive itegers.

 See The Solution Submitted by K Sengupta Rating: 4.5000 (2 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
 heuristic computer exploration -- no proof | Comment 1 of 5

The following program finds that among the 12,792 such pairs through 6104927, 6104929=112225+5992704, the final duodecimal digit of n+2 is 1 except for the case where n+2 = 5, where obviously the only digit is 5.

This means that for n, the only values are 3 and B (the latter representing base-10 11), with there being only one instance of the 3, which is 3 itself.

Note that the program's N is the puzzle's n+2:

`  10       loop  20         Prev=N  30         N=nxtprm(N)  40         if N-Prev=2 then  50            :Good=0  60            :for I=1 to int(sqrt(N)/2)  70              :Sq1=I*I  80              :Sq2=N-Sq1  90              :Sr2=int(sqrt(Sq2)+0.5) 100              :if Sr2*Sr2=Sq2 then Good=1:cancel for:goto 120:endif 110            :next I 120            :if Good=1 then inc Ct:print N,N @ 12,Ct,Sq1;Sq2:endif 125            :if Good=1 and N @ 12<>1 and N>5 then stop:endif 130         :endif 140       endloop`

 Posted by Charlie on 2011-09-22 15:21:02

 Search: Search body:
Forums (0)