All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Going Maximum with Geometric (Posted on 2011-10-21) Difficulty: 3 of 5
Determine the maximum value of a (base ten) positive integer N (with non leading zeroes) such that each of the digits of N, with the exception of the first digit and the last digit, is less than the geometric mean of the two neighboring digits.

*** For an extra challenge, solve this puzzle without the aid of a computer program.

See The Solution Submitted by K Sengupta    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
re: Analysis and solution Comment 4 of 4 |
(In reply to Analysis and solution by Jer)

Jer, that was a clear and precise analytic methodology which I have incorporated in my solution.  
  Posted by K Sengupta on 2012-03-21 09:57:15

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (2)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2017 by Animus Pactum Consulting. All rights reserved. Privacy Information