All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > General
Boosted board (Posted on 2012-02-07) Difficulty: 3 of 5
Consider an infinite chessboard. Each square contains either a 1 or an X in some pattern. (X can be any real number but for a given board, all the X's are the same.)

Each square with an X on it has weight equal to zero.
Each square with a 1 on it has a weight of 1 + N*X where N is the total number of X's on the 8 surrounding squares.

For a given value of X, find a way of tiling the board with the highest average weight per square.

Inspired by various Tower Defense games.

See The Solution Submitted by Jer    
Rating: 4.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
re: Final Answer? (spoiler) | Comment 7 of 11 |
(In reply to Final Answer? (spoiler) by Steve Herman)

There is another pattern that is sometimes better than either of these.
There is yet another pattern that, in one case is tied for the best.  It is never the sole best pattern.

  Posted by Jer on 2012-02-09 10:47:34

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (2)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2017 by Animus Pactum Consulting. All rights reserved. Privacy Information