All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars
 perplexus dot info

 Square Crossed Sequence (Posted on 2013-12-09)
A sequence {Bp} of positive integers is such that:

B1 = 20, B2 = 30, and:

Bp+2 = 3*Bp+1 – Bp, whenever p ≥ 1.

Determine all possible positive integer values of p such that:
1 + 5*Bp+1*Bp is a perfect square.

**** For an extra challenge, derive a non computer program assisted solution.

 No Solution Yet Submitted by K Sengupta No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
 computer exploration -- no proof of completeness | Comment 1 of 3
10     B1=20:B2=30
20     Ct=1
30
40     while B3<10^2000
50       Sq=1+5*B2*B1
60       Sr=int(sqrt(Sq)+0.5)
70       if Sr*Sr=Sq then print Ct,B1;B2,Sq;Sr
80       B3=3*B2-B1
90       B1=B2:B2=B3
100       Ct=Ct+1
110     wend
OK
run
3       70  180         63001  251
Overflow in 60
?ct
3075

After checking over 3000 iterations, only 70 and 180, the next two numbers after 20 and 30 satisfy the square condition, with the formula producing 1 + 5*70*180 = 63001 = 251^2.
 Posted by Charlie on 2013-12-09 16:43:04

 Search: Search body:
Forums (0)