All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Probability
My uncle's habits (Posted on 2013-06-28) Difficulty: 4 of 5
My uncle’s ritual for dressing each morning except Sunday includes a trip to the sock drawer, where he:
(1) picks out three socks at random, then
(2) wears any matching pair and returns the odd sock to the drawer or
(3) returns the three socks to the drawer if he has no matching pair and repeats steps (1) and (3) until he completes step (2).

The drawer starts with 16 socks each Monday morning (eight blue, six black, two brown) and ends up with four socks each Saturday evening.

(a) On which day of the week does he average the longest time to dress?
(b) On which day of the week is he least likely to get a pair from the first three socks chosen?

Source: manchi tutorials

No Solution Yet Submitted by Ady TZIDON    
Rating: 5.0000 (2 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Some Thoughts I'll be watching | Comment 1 of 4
If the probability of getting a pair is p, then the expected number of attempts is 1/p.   So, at first blush, I thought that (a) and (b) had the same answer, but after thinking for a few seconds I realized that it is not necessarily so.  

The issue is that after Monday, there is not a single known p.  Instead, p is a distribution of probabilities, which depend on what happened on earlier days.  And the inverse of the expected value of the p is not the same as the expected value of the inverse of p.  (a) and (b) could therefore be different days, and I am hoping (and guessing) that the number of sock pairs was selected so that (a) and (b) are in fact different days.

I'm afraid that I can't do the calculation just now, but I promise to check whoever attempts an answer.

Edited on June 28, 2013, 3:30 pm
  Posted by Steve Herman on 2013-06-28 13:25:51

Please log in:
Remember me:
Sign up! | Forgot password

Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (5)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Copyright © 2002 - 2018 by Animus Pactum Consulting. All rights reserved. Privacy Information