All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars
 perplexus dot info

 Parallelogram Requirement (Posted on 2013-07-07)

Let ABCD be a convex quadrilateral.

Prove that ABCD is a parallelogram
if and only if
|AC|2 + |BD|2 = |AB|2 + |BC|2 + |CD|2 + |DA|2.

 See The Solution Submitted by Bractals Rating: 3.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
 Proof. No picture. Comment 1 of 1

Call the four vertices of the parallelogram:
A=(0,0) B=(a,0) C=(a+b,c) D=(b,c)
|AC|2 + |BD|2
=((a+b)²+c²)+((b-a)²+c²
=2a²+2b²+2c²

|AB|2 + |BC|2 + |CD|2 + |DA|2
=2(b²+c²)+2(a²)
=2a²+2b²+2c²

For the "only if" I'll show if the equation works for a trapezoid, the trapezoid must be a parallelogram.
A=(0,0) B=(a,0) C=((b+x),c) D=(b,c)
|AC|2 + |BD|2 = |AB|2 + |BC|2 + |CD|2 + |DA|2
((b+x)²+c²)+((b-a)²+c²) = (b²+c²)+x²+((b+x-a)²+c²)+a²
x²-2ax+a²=0
(x-a)²=0
x=a

What I'd like to see is a visual proof such as the three on the wikipedia page
http://en.wikipedia.org/wiki/Pythagorean_theorem

 Posted by Jer on 2013-07-09 11:00:04

 Search: Search body:
Forums (0)
Random Problem
Site Statistics
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox: