All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars
 perplexus dot info

 A missing proverb (Posted on 2014-01-09)
Solve the alphametics:

words * war = actions

and complete the following phrase:

(-)23u870 (-) 23470 (-) 2340e (-) (-)23u870 (-) 02347.

each (-) .... Represents a short missing word.

 See The Solution Submitted by Ady TZIDON No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
 computer solution | Comment 1 of 2

DECLARE SUB permute (a\$)
CLS
a\$ = "1234567890": h\$ = a\$
DO
IF INSTR(a\$, "0") > 2 THEN
w = VAL(MID\$(a\$, 1, 1))
a = VAL(MID\$(a\$, 2, 1))
o = VAL(MID\$(a\$, 3, 1))
r = VAL(MID\$(a\$, 4, 1))
d = VAL(MID\$(a\$, 5, 1))
s = VAL(MID\$(a\$, 6, 1))
c = VAL(MID\$(a\$, 7, 1))
t = VAL(MID\$(a\$, 8, 1))
i = VAL(MID\$(a\$, 9, 1))
n = VAL(MID\$(a\$, 10, 1))
words = 10000 * w + 1000 * o + 100 * r + 10 * d + s
war = 100 * w + 10 * a + r
actions = 1000000 * a + 100000 * c + 10000 * t + 1000 * i + 100 * o + 10 * n + s
IF words * war = actions THEN
PRINT w; a; o; r; d; s; c; t; i; n
PRINT "w; a; o; r; d; s; c; t; i; n"
END IF
END IF
permute a\$
LOOP UNTIL a\$ = h\$

SUB permute (a\$)
DEFINT A-Z
x\$ = ""
FOR i = LEN(a\$) TO 1 STEP -1
l\$ = x\$
x\$ = MID\$(a\$, i, 1)
IF x\$ < l\$ THEN EXIT FOR
NEXT

IF i = 0 THEN
FOR j = 1 TO LEN(a\$) \ 2
x\$ = MID\$(a\$, j, 1)
MID\$(a\$, j, 1) = MID\$(a\$, LEN(a\$) - j + 1, 1)
MID\$(a\$, LEN(a\$) - j + 1, 1) = x\$
NEXT
ELSE
FOR j = LEN(a\$) TO i + 1 STEP -1
IF MID\$(a\$, j, 1) > x\$ THEN EXIT FOR
NEXT
MID\$(a\$, i, 1) = MID\$(a\$, j, 1)
MID\$(a\$, j, 1) = x\$
FOR j = 1 TO (LEN(a\$) - i) \ 2
x\$ = MID\$(a\$, i + j, 1)
MID\$(a\$, i + j, 1) = MID\$(a\$, LEN(a\$) - j + 1, 1)
MID\$(a\$, LEN(a\$) - j + 1, 1) = x\$
NEXT
END IF
END SUB

finds the correspondence:

` 2  5  3  4  7  0  9  6  1  8w; a; o; r; d; s; c; t; i; n`

Then, filling in with short missing words, we get:

(the) wounds (from) words (are) worse (than) (the) wounds (from) sword.

 Posted by Charlie on 2014-01-09 18:47:47

 Search: Search body:
Forums (0)