All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > General
U * I = $$$ (Posted on 2014-01-14) Difficulty: 3 of 5
After finding the unique solution of the alphametic:
YOU*ME=MONEY
insert the 6 distinct digits you have got into the formula :
$ = (A+B)* (C+D)* (E+F),
to get a maximum value of $.

See The Solution Submitted by Ady TZIDON    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution computer solution Comment 1 of 1

 DECLARE SUB permute (a$)
 CLS
 DEFDBL A-Z
 FOR y = 1 TO 9
  used(y) = 1
  FOR m = 1 TO 9
   IF used(m) = 0 THEN
     used(m) = 1
  FOR o = 0 TO 9
   IF used(o) = 0 THEN
     used(o) = 1
  FOR u = 0 TO 9
   IF used(u) = 0 THEN
     used(u) = 1
  FOR e = 0 TO 9
   IF used(e) = 0 THEN
     used(e) = 1
  FOR n = 0 TO 9
   IF used(n) = 0 THEN
     used(n) = 1
     you = 100 * y + 10 * o + u
     me = 10 * m + e
     money = 10000 * m + 1000 * o + 100 * n + 10 * e + y
     IF you * me = money THEN
     PRINT y; o; u, m; e, m; o; n; e; y
     ys = y: os = o: us = u: ms = m: es = e: ns = n
     ct = ct + 1
     END IF
 
     used(n) = 0
   END IF
  NEXT
     used(e) = 0
   END IF
  NEXT
     used(u) = 0
   END IF
  NEXT
     used(o) = 0
   END IF
  NEXT
     used(m) = 0
   END IF
  NEXT
  used(y) = 0
 NEXT
 
 PRINT ct
 a$ = LTRIM$(STR$(ys)) + LTRIM$(STR$(os)) + LTRIM$(STR$(us)) + LTRIM$(STR$(ms)) + LTRIM$(STR$(es)) + LTRIM$(STR$(ns))
 h$ = a$
 DO
   a = VAL(MID$(a$, 1, 1))
   b = VAL(MID$(a$, 2, 1))
   c = VAL(MID$(a$, 3, 1))
   d = VAL(MID$(a$, 4, 1))
   e = VAL(MID$(a$, 5, 1))
   f = VAL(MID$(a$, 6, 1))
   s = (a + b) * (c + d) * (e + f)
   IF s > max THEN
     max = s
     PRINT a; b; c; d; e; f, s
   END IF
   permute a$
 LOOP UNTIL a$ = h$
 
finds the solution to the alphametic:

 Y  O  U       M  E          M  O  N  E  Y
 8  1  4       2  7          2  1  9  7  8

and the best total from these digits:

 A  B  C  D  E  F       (A+B)*(C+D)*(E+F) 
 8  2  1  9  4  7            1100

  Posted by Charlie on 2014-01-14 17:49:20
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (2)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2017 by Animus Pactum Consulting. All rights reserved. Privacy Information