All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars
 perplexus dot info

 Leapfrog (Posted on 2003-06-24)
Assume you have a checker board with 7 rows and infinite columns. You can place checkers on only the first 2 rows initially (number these -1 and 0). Then you may jump other checkers up, down, right, and left but not diagonally. The goal is to get as high a row as possible. For example you can get to the second level with four checkers like this:
``` Level   Setup    Turn 1   Turn 2   Turn 3
------  -------  -------  -------  -------
2     ·····    ·····    ·····    ···a·
1     ·····    ···d·    ···d·    ·····
0     ·abc·    ·ab··    ···a·    ·····
-1     ···d·    ·····    ·····    ·····
```
It turns out you need at least 2 checkers to get to level 1, 4 to get to level 2, 8 to get to level 3, and 20 to get to level 4.

Prove the least number of jumps it would take to get to level 5, and how you would do it.

Note: You may place the initial checkers anywhere you wish, as necessary.

 No Solution Yet Submitted by DJ Rating: 4.2727 (11 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
 re(2): Impossible? | Comment 11 of 18 |
(In reply to re: Impossible? by Yoseph)

Actually, Yoseph, I've been trying to show how to get to level 4 in twenty moves myself. I have the mathematical proofs that it is possible, but I want to put up the actual method to level 4 -- that lack is the only reason I haven't posted a solution. So, if you could post even the start of your method, I'll type it all out and post a full solution. By the way, good job for figuring it out! =)
 Posted by DJ on 2003-08-20 11:14:54

 Search: Search body:
Forums (0)