All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
Reverse Role II (Posted on 2014-12-29) Difficulty: 2 of 5
Determine the minimum value of a three digit octal (base 8) positive integer N that has its digits reversed when expressed in the duodecimal (base 12) system.

Determine the three digit duodecimal (base 12) positive integer N that has its digits reversed when expressed in the hexadecimal (base 16) system.

No Solution Yet Submitted by K Sengupta    
No Rating

Comments: ( Back to comment list | You must be logged in to post comments.)
computer solution Comment 2 of 2 |
DefDbl A-Z
Dim crlf$

Function mform$(x, t$)
  a$ = Format$(x, t$)
  If Len(a$) < Len(t$) Then a$ = Space$(Len(t$) - Len(a$)) & a$
  mform$ = a$
End Function

Private Sub Form_Load()
 ChDir "C:\Program Files (x86)\DevStudio\VB\projects\flooble"
 Text1.Text = ""
 crlf$ = Chr(13) + Chr(10)
 Form1.Visible = True
 DoEvents
 
 For v = 8 * 8 To 8 * 8 * 8 - 1
   b8$ = base$(v, 8)
   b12$ = base$(v, 12)
   If Len(b12$) = 3 Then
     good = 1
     For i = 1 To 3
       If Mid(b8$, i, 1) <> Mid(b12$, 4 - i, 1) Then good = 0: Exit For
     Next
     If good Then
       Text1.Text = Text1.Text & v & " " & b8$ & " " & b12$ & crlf
       DoEvents
     End If
   End If
 Next
 Text1.Text = Text1.Text & crlf
  
 For v = 12 * 12 To 12 * 12 * 12 - 1
   b12$ = base$(v, 12)
   b16$ = base$(v, 16)
   If Len(b16$) = 3 Then
     good = 1
     For i = 1 To 3
       If Mid(b12$, i, 1) <> Mid(b16$, 4 - i, 1) Then good = 0: Exit For
     Next
     If good Then
       Text1.Text = Text1.Text & v & " " & b12$ & " " & b16$ & crlf
       DoEvents
     End If
   End If
 Next
 Text1.Text = Text1.Text & crlf
  


 Text1.Text = Text1.Text & " done"
End Sub


Function base$(n, b)
  v$ = ""
  n2 = n
  Do
    d = n2 Mod b
    n2 = n2 \ b
    v$ = Mid("0123456789abcdefghijklmnopqrstuvwxyz", d + 1, 1) + v$
  Loop Until n2 = 0
  base$ = v$
End Function


finds


decimal 475 = octal 733 = duodecimal 337

decimal 1337 = duodecimal 935 = hexadecimal 539

Edited on December 29, 2014, 9:57 am
  Posted by Charlie on 2014-12-29 09:56:16

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (4)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2017 by Animus Pactum Consulting. All rights reserved. Privacy Information