All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Just Math
The medians of medians (Posted on 2014-12-20) Difficulty: 4 of 5
<begin> For a triangle with integer sides a,b,c (none over 2000) evaluate the triplet of its medians ma , mb , mc .
Let those three become sides of a new triangle i.e. (a,b,c) =(ma , mb , mc ).

It is up to you to find a triplet (a,b,c) such that the above procedure can be executed a maximal number of times, creating sets of “medians“ with integer values only.

The answer should include: (a,b,c) and all interim sets of medians.

Rem: Can be solved analytically.

See The Solution Submitted by Ady TZIDON    
Rating: 4.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
re(2): Solution | Comment 5 of 6 |
(In reply to re: Solution by Harry)

As I understood the problem, Harry. Ady was inferring the points intersected by the medians with the sides of the triangle (the medial points) would be the vertices of the inner triangle.

Edited on December 20, 2014, 6:48 pm
  Posted by Dej Mar on 2014-12-20 18:47:24

Please log in:
Remember me:
Sign up! | Forgot password

Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (4)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Copyright © 2002 - 2019 by Animus Pactum Consulting. All rights reserved. Privacy Information