Imagine a bag containing cards representing all n-digit odd numbers.
A random card is drawn and two new numbers are created by preceding the drawn number by each of its even neighbors.

What is the probability that each of those 2 numbers is prime?

Examples:

For n=1 there are 5 cards i.e. 1,3,5,7 and 9. Clearly only numbers 3 and 9 qualifiy since fboth 23 and 43 are primes and so are 89 and 109 & there are no other answers.
So for n=1 p=0.4 is the probability we were looking for.

For n=2 I will not provide the answer but will show you one of the qualifying numbers e.g. 69, since both 6869 and 7069 are prime.

Now evaluate the correct probabilities for n=2,3, ...8,9
(or as far as your resources allow) - and you will get a sequence for which you may be credited @ OEIS.

So this time you get a task both challenging and rewarding!

GOOD LUCK...