All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Logic > Liars and Knights
Another Race (Posted on 2003-12-15) Difficulty: 3 of 5
When I went to the race track in Racing Town, a town made up only of Knights which always tell the truth, Knaves which tell truths and lies in an alternating pattern, and Liars which always lie, a race between 6 citizens of that town had just finished.

I went to the 6 citizens and asked each of them the order that all 6 finished. They all gave me different responses, each thinking themselves as winning, displayed here left to right as first to last.

A: A C D E B F
B: B D F E C A
C: C D E F A B
D: D E F B A C
E: E B A D F C
F: F C B A E D

From what they said, I was able to figure out what the correct order was. What is it?

See The Solution Submitted by Gamer    
Rating: 3.3636 (11 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution Full Solution | Comment 2 of 9 |
The answer is:
A F D C B E

A is a Knave, and all the others are liars
____________________________________________

Since SOMEONE must have won, only one of them can have gotten the first one correct.

Therefore, there is either zero or one knights. Also, since one told the truth in the first position, they can't ALL be liars.

Case (1): If there is one knight,
  then one of the six people have the actual order, and we merely try each in succession.
  case (1.1):
    if A is the knight, then B told the truth in only the 4th position. impossible
  case (1.2):
    if B is the knight, then A told the truth in only the 4th position. impossible
  case (1.3):
    if C is the knight, then B told the truth in only the 2nd position. impossible
  case (1.4):
    if D is the knight, then C told the truth in only the 5th position. impossible
  case (1.5):
    if E is the knight, then D told the truth in only the 6th position. impossible
  case (1.6):
    if F is the knight, then A told the truth in only the 2nd position. impossible

  Therefore Case (1) isn't the case.  There is no knight, and at least one knave.


Case (2):
  (let X be an unknown letter) there are only two possibilities in each case 2.x.x,
  because the other possible 4 combinations would let each person lie twice in six times.

  Case (2.1) If A is a knave and told the truth in the first position: A X D X B X
    Case (2.1.1) A E D F B C
      impossible 'cause then C told the truth in only 4th position.
    Case (2.1.2) A F D C B E
      POSSIBLE - A is a Knave and tells the truth first, the others are all liars.

  Case (2.2) If B is a knave and told the truth in the first position: B X F X C X
    Case (2.2.1) B E F A C D
      impossible 'cause then D told the truth in 2nd and 3rd position.
    Case (2.2.2) B A F D C E
      impossible 'cause then D told the truth in only 3rd position.

  Case (2.3) If C is a knave and told the truth in the first position: C X E X A X
    impossible can't be because D agrees in only one of the positions.

  Case (2.4) If D is a knave and told the truth in the first position: D X F X A X
    impossible can't be because C agrees in only one of the positions.

  Case (2.5) If E is a knave and told the truth in the first position: E X A X F X
    Case (2.5.1) E D A C F B
      impossible 'cause then C told the truth in only 6th position.
    Case (2.5.2) E C A B F D
      impossible 'cause then D told the truth in only the 4th position.

  Case (2.6) If F is a knave and told the truth in the first position: F X B X E X
    Case (2.6.1) F A B D E C
      impossible 'cause then D told the truth in only the 6th position.
    Case (2.6.2) F D B C E A
      impossible 'cause then B told the truth in 2nd and 6th position.
Edited on December 15, 2003, 9:22 am
  Posted by SilverKnight on 2003-12-15 09:19:54
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (1)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (6)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information