All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Logic > Weights and Scales
The odd coin (Posted on 2002-05-01) Difficulty: 3 of 5
In a pile, there are 11 coins: 10 coins of common weight and one coin of different weight (lighter or heavier). They all look similar.

Using only a balance beam for only three times, show how you can determine the 'odd' coin.

Open problem (i cannot solve this myself): how many more coins (with the same weight as the ten) can we add to that pile so that three weighing still suffices? My conjecture is zero, though my friend guessed that adding one is possible. The best bound we can agree upon is < 2.

See The Solution Submitted by theBal    
Rating: 3.1667 (6 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Question 12 coins | Comment 8 of 40 |
I think I read somewhere that this can be done with 12 coins and still able to determine whether the last one is heavier or lighter than the others...

I worked out the solution Half-Mad gave but i couldn't figure out how to get all possibilities to show whether the odd coin was heavier or lighter...
  Posted by Aeternus on 2002-10-11 04:38:29
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (1)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (6)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information