Fill in the blanks. All the sequences below follow the same pattern.
1.) 0
2.) 1, 1, 1, 1, 1, 1, 1, 1...
3.) 2, 2, 2, 2, 2, 2, 2, 2...
4.) 5, 5, 5, 5, 5, 5, 5, 5...
5.) 4, 8, 64, 2097152 ...
6.) 6, 36, 10077696 ...
7.) 7, 7, 7, 7, 7, 7, 7, 7...
8.) 9, 27, 729, 14348907 ...
9.) 10, 100, ____, ....
10.) 11, ____ ....
(In reply to
got it by jesse)
Another way of looking at this is that each successive number is the product of all the divisors of the preceding number, including that number itself (so you don't multiply that number by the product of the factors--it's just the product of the factor (divisors)--including the number itself).
A UBASIC program produces (when a number extends to the edge, it's continued on the next line--that's not a new number):
2 2 2 2 2 2 2
3 3 3 3 3 3 3
4 8 64 2097152 345087317339528189371737793113851272622555448608519327758126
2111899648
5 5 5 5 5 5 5
6 36 10077696 14725249858351738531758616406923803289611205835143875798301476
96933725652329938814699489912177091370194610371452945920201737013751689122823344
84871403174767655880386045910084758703074415025299415269171925628511937032731984
01289798659170788350250654824767131118332645255421785880238670351400361139922403
6192306226210075368787167671873479497761345765376
7 7 7 7 7 7 7
8 64 2097152 345087317339528189371737793113851272622555448608519327758126211
1899648
9 27 729 10460353203 164062694609488086547539746812648575659318856476507740
436897453222447961474036515706307096943652603236842951947
10 100 1000000000 1000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000
11 11 11 11 11 11 11
12 1728 2116471057875484488839167999221661362284396544
13 13 13 13 13 13 13
14 196 20661046784 572289865518550906473459269984096192380710993219229673657
94652184423945333254122496651562041158958347909896818954965390353572266664573848
30774066987085123907460149528854520521907692049226249803601205254780949521935518
31514437559329125870814555210239068034820923267231914992058547700416695831022231
25005723472823193331239897610260659540671992240606962708382629504331967680571918
72156863597188577294362090789235477399989947165444379091109225494176959421892576
78736286644499109840378341193998665600647757288557433061376
where 9 27 729 10460353203 is the only discrepancy from the original puzzle; again, perhaps an error on the part of the poser.
It then confirms that 100 if followed by 1000000000 and 11 is followed by 11.
The program is:
5 goto 1000
10 *FactorIt
20 N=abs(Num):if N>0 then Limit=sqrt(N):else Limit=0
22 PSubscr=0
30 if Limit<>int(Limit) then Limit=int(Limit+1)
40 Dv=2:gosub *DivideIt
50 Dv=3:gosub *DivideIt
60 Dv=5:gosub *DivideIt
70 Dv=7
80 while 1
90 gosub *DivideIt:Dv=Dv+4 '11
100 gosub *DivideIt:Dv=Dv+2 '13
110 gosub *DivideIt:Dv=Dv+4 '17
120 gosub *DivideIt:Dv=Dv+2 '19
130 gosub *DivideIt:Dv=Dv+4 '23
140 gosub *DivideIt:Dv=Dv+6 '29
150 gosub *DivideIt:Dv=Dv+2 '31
160 gosub *DivideIt:Dv=Dv+6 '37
170 if inkey=chr(27) then S$=chr(27):goto *Finis
171 if Dv>Limit then goto *Outloop
180 wend
188 *Outloop
190 if N>1 then
191 :if N=PDivsr(PSubscr) then NOccur(PSubscr)=NOccur(PSubscr)+1:els
e PSubscr=PSubscr+1:PDivsr(PSubscr)=N:NOccur(PSubscr)=1:endif
200 return
220 *DivideIt
230 while 1
240 Q=int(N/Dv)
250 if Q*Dv=N and N>0 then
260 :N=Q:if N>0 then Limit=sqrt(N):else Limit=0:endif
262 :if Dv=PDivsr(PSubscr) then NOccur(PSubscr)=NOccur(PSubscr)+1:el
se PSubscr=PSubscr+1:PDivsr(PSubscr)=Dv:NOccur(PSubscr)=1:endif
270 :if Limit<>int(Limit) then Limit=int(Limit+1):else nop:endif
280 :else
290 :return
300 :endif
310 wend
320 return
1000 dim PDivsr(30)
1010 dim NOccur(30):dim NTms(30)
1020 for NStart=2 to 14
1030 Num=NStart:print Num;
1035 Iter=1
1036 while Iter<=6
1040 erase PDivsr():erase NOccur()
1050 dim PDivsr(30):dim NOccur(30)
1060 gosub *FactorIt
1070 T=1:if PSubscr>0 then gosub *Analyze(1)
1075 print T;:if T>10^20 then Iter=9
1080 Num=T:Iter=Iter+1
1190 wend
1195 print:print
1200 next NStart
1300 end
2000 *Analyze(S)
2010 local NumTimes,I,J,Noc
2090 Noc=NOccur(S)
2100 for NumTimes=0 to Noc
2110 NTms(S)=NumTimes
2120 if S=PSubscr then
2140 :for I=1 to PSubscr
2150 :for J=1 to NTms(I)
2160 :T=T*PDivsr(I)
2170 :next J
2180 :next I
2190 :else
2200 :gosub *Analyze(S+1)
2215 next NumTimes
2390 return
Edited on April 26, 2004, 3:42 pm
|
Posted by Charlie
on 2004-04-26 15:40:42 |