All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Games
The Fifteen Steps (Posted on 2004-04-26) Difficulty: 5 of 5
There are 15 stairs arranged in a line. There are 6 people on various different steps.

The only rule is you can only move a person if you move it to any lower vacant stair.

In a two player game, you alternate moving single people. The last one to move a person wins! What strategy should you use in order to win?

What strategy would be used if the people couldn't pass each other when moving down the stairs?

No Solution Yet Submitted by Gamer    
Rating: 3.8000 (5 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution The second part | Comment 4 of 16 |

The second part (no passing) is actually the easier of the two versions.  In this case, you are playing a cleverly disguised game of nim - the stacks are the alternating distances.

If the people stand on steps 3, 5, 9, 12, 17, 18 then the nim values are (18-17)-1=0, (12-9)-1=2, and (5-3)-1=1.  In this case a winning move is moving 12 to 11.

If there are an odd number of people, then the lowest is considered singly.  If the people are on 3, 5, 9, 12, 17, then the nim values are (17-12)-1=4, (9-5)-1=3, and (3)-1=2.  A winning move in this case is moving 17 to 14.


  Posted by Brian Smith on 2004-04-27 08:40:16
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (0)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information