A standard, thoroughly shuffled 52-card deck is dealt one at a time to 5 players (players 1 - 5) in standard fashion, until the deck is exhausted.
Using non-brute force methods, show which player is most likely to be
dealt the last Diamond in the deck.
The calculated probability of getting the last diamond on a particular card is specified in the table below by the particular card dealt, and then is summarized in overall probabilities for players 1 through 5:
0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
0.00000000 0.00000000 0.00000001 0.00000003 0.00000008
0.00000020 0.00000046 0.00000102 0.00000213 0.00000426
0.00000819 0.00001521 0.00002738 0.00004791 0.00008172
0.00013621 0.00022223 0.00035557 0.00055876 0.00086353
0.00131407 0.00197110 0.00291723 0.00426365 0.00615860
0.00879801 0.01243856 0.01741399 0.02415488 0.03321296
0.04529041 0.06127525 0.08228391 0.10971188 0.14529412
0.19117647 0.25000000
last diamond
0.24672355 0.32592283 0.10299911 0.13873924 0.18561528
and was obtained by:
DEFDBL A-Z
CLS
prNotThisCum = 1
FOR card = 52 TO 1 STEP -1
pl = (card - 1) MOD 5 + 1
round = (card - 1) \ 5 + 1
prNotThis = (card - 13) / card
prThis = prNotThisCum * 13 / card
prNotThisCum = prNotThisCum * prNotThis
tProb(pl) = tProb(pl) + prThis
LOCATE round + 1, (pl - 1) * 13 + 1
PRINT USING "#.########"; prThis;
NEXT card
FOR pl = 1 TO 5
LOCATE 15, (pl - 1) * 13 + 1
PRINT USING "#.########"; tProb(pl);
NEXT
If the problem had called for, say, the last ace (only 4 in the deck rather than 13), the probabilities would have been:
0.00000000 0.00000000 0.00000000 0.00000369 0.00001478
0.00003694 0.00007388 0.00012928 0.00020685 0.00031028
0.00044325 0.00060947 0.00081263 0.00105642 0.00134454
0.00168067 0.00206852 0.00251177 0.00301413 0.00357928
0.00421092 0.00491273 0.00568843 0.00654169 0.00747622
0.00849571 0.00960384 0.01080432 0.01210084 0.01349709
0.01499677 0.01660356 0.01832117 0.02015329 0.02210361
0.02417582 0.02637363 0.02870071 0.03116077 0.03375750
0.03649460 0.03937575 0.04240465 0.04558500 0.04892049
0.05241481 0.05607166 0.05989473 0.06388771 0.06805430
0.07239819 0.07692308
last ace
0.21534768 0.23261612 0.16926771 0.18371041 0.19905808
|
Posted by Charlie
on 2004-05-25 08:59:04 |