Find all integers 1<=k<=169 for which 169 is not the sum of k nonzero squares.
The squares are not necessarily unique. For example k=5: 169=1+4+4+16+144.
This should be done without a brute force program.
k=169 169*1
k=166 165*1 + 1*4
k=163 161*1 + 2*4
k=161 160*1 + 1*9
k=160 157*1 + 3*4
k=158 156*1 + 1*4 + 1*9
k=157 153*1 + 4*4
k=155 152*1 + 2*4 + 1*9
k=154 149*1 + 5*4 OR 153*1 + 1*16
k=152 148*1 + 3*4 + 1*9
k=151 145*1 + 6*4 OR 149*1 + 1*4 + 1*16
k=149 144*1 + 4*4 + 1*9
k=148 141*1 + 7*4 OR 145*1 + 2*4 + 1*16
k=147 143*1 + 2*4 + 2*9
k=146 140*1 + 5*4 + 1*9
k=145 137*1 + 8*4
k=144 139*1 + 3*4 + 2*9
Patterns seem to repeat every k-3 so I think all values of k in the upper range other than those missed above have a solution.
I'll start on the lower values of k.
|
Posted by Nosher
on 2004-11-04 22:38:15 |