In a group of students, 50 speak English, 50 speak French and 50 speak
Spanish. Some students speak more than one language. Prove it is
possible to divide the students into 5 groups (not necessarily equal),
so that in each group 10 speak English, 10 speak French and 10 speak
Spanish.
Let the following letters symbolize the language speakers:
e = speaks only English
f = speaks only French
s = speaks only Spanish
ef = speaks only English and French
es = speaks only English and Spanish
fs = speaks only French and Spanish
efs = speaks English, French and Spanish
Then in the entire group of people,
50 = e + ef + es + efs
50 = f + ef + fs + efs
50 = s + es + fs + efs
Because all three groupings sum to 50, it is always possible to split the group into five groups, in each of which 10 will speak English, 10 French and 10 Spanish, by first going after all
who speak all three languages, then those who speak pairs
of languages, and finally those who speak only one language. Every time you take someone from a pool of two or three languages, there will be exactly the right number of single language speakers in each case to complete the five groups, as needed, because of those three equations to 50.
Case 1: Everyone speaks only one language.
e=50 f=50 s=50
The groups are:
10e + 10f + 10s
10e + 10f + 10s
10e + 10f + 10s
10e + 10f + 10s
10e + 10f + 10s
Case 2: There is just one pair of languages that one or more people speak. No one speaks all three languages.
fs= 1 e= 50 f= 49 s= 49
The groups are:
fs + 10e + 9f + 9s
10e + 10f + 10s
10e + 10f + 10s
10e + 10f + 10s
10e + 10f + 10s
fs= 2 e= 50 f= 48 s= 48
Groups:
2fs + 10e + 8f + 8s
10e + 10f + 10s
10e + 10f + 10s
10e + 10f + 10s
10e + 10f + 10s
etc...
fs= 50 e= 50
Groups:
10fs + 10e
10fs + 10e
10fs + 10e
10fs + 10e
10fs + 10e
Case 3: There are two pairs of languages that one or more people speak. No one speaks all three.
es= 1 fs= 1 e= 49 f= 49 s= 48
Groups:
es + fs + 9e + 9f + 8s
10e + 10f + 10s
10e + 10f + 10s
10e + 10f + 10s
10e + 10f + 10s
es= 1 fs= 2 e= 49 f= 48 s= 47
Groups:
es + 2fs + 9e + 8f + 7s
10e + 10f + 10s
10e + 10f + 10s
10e + 10f + 10s
10e + 10f + 10s
etc....
es= 49 fs= 1 e= 1 f= 49
Groups:
9es + fs + e + 9f
10es + 10f
10es + 10f
10es + 10f
10es + 10f
Case 4: There are three pairs of languages that one or more people speak. No one speaks all three.
ef= 1 es= 1 fs= 1 e= 48 f= 48 s= 48
Groups:
ef + es + fs + 8e + 8f + 8s
10e + 10f + 10s
10e + 10f + 10s
10e + 10f + 10s
10e + 10f + 10s
ef= 1 es= 1 fs= 2 e= 48 f= 47 s= 47
Groups:
ef + es + 2fs + 8e + 7f + 7s
10e + 10f + 10s
10e + 10f + 10s
10e + 10f + 10s
10e + 10f + 10s
etc...
ef= 49 es= 1 fs= 1 s= 48
Groups:
9ef + es + fs + 8s
10ef + 10s
10ef + 10s
10ef = 10s
10ef + 10s
Case 5: At least one person speaks all three languages. No one speaks just two.
efs= 1 e= 49 f= 49 s= 49
Groups:
efs + 9e + 9f + 9s
10e + 10f + 10s
10e + 10f + 10s
10e + 10f + 10s
10e + 10f = 10s
efs= 2 e= 48 f= 48 s= 48
Groups:
2efs + 8e + 8f + 8s
10e + 10f + 10s
10e + 10f + 10s
10e + 10f + 10s
10e = 10f = 10s
etc...
efs = 50
Groups:
10efs
10efs
10efs
10efs
10efs
Case 6: There is one pair of languages that one or more people speak. At least one person speaks all three.
efs= 1 fs= 1 e= 49 f= 48 s= 48
Groups:
efs + fs + 9e + 8f + 8s
10e + 10f + 10s
10e + 10f + 10s
10e + 10f = 10s
10e + 10f + 10s
efs= 1 fs= 2 e= 49 f= 47 s= 47
Groups:
efs + 2fs + 9e + 7f + 7s
10e + 10f + 10s
10e + 10f + 10s
10e + 10f = 10s
10e + 10f + 10s
etc...
efs= 49 fs= 1 e= 1
Groups:
9efs + fs + e
10efs
10efs
10efs
10efs
Case 7: There are two pairs of languages that one or more people speak. At least one person speaks all three.
efs= 1 es= 1 fs= 1 e= 48 f= 48 s= 47
Groups:
efs + es + fs + 8e + 8f + 7s
10e + 10f + 10s
10e + 10f + 10s
10e + 10f + 10s
10e + 10f + 10s
efs= 1 es= 1 fs= 2 e= 48 f= 47 s= 46
Groups:
efs + es + 2fs + 8e + 7f + 6s
10e + 10f + 10s
10e + 10f + 10s
10e + 10f + 10s
10e + 10f + 10s
etc...
efs= 48 ef= 1 es= 1 f= 1 s= 1
Groups:
8efs + ef + es + f + s
10efs
10efs
10efs
10efs
Case 8: There is at least one person who only speaks one of three possible pairs of languages. There is at least one person who speaks all three.
efs= 1 ef= 1 es= 1 fs= 1 e= 47 f= 47 s= 47
Groups:
efs + ef + es + fs + 7e + 7f + 7s
10e + 10f + 10s
10e + 10f + 10s
10e + 10f + 10s
10e + 10f + 10s
efs= 1 ef= 1 es= 1 fs= 2 e= 47 f= 46 s= 46
Groups:
efs + ef + es + 2fs + 7e + 6f + 6s
10e + 10f + 10s
10e + 10f + 10s
10e + 10f + 10s
10e + 10f + 10s
etc...
efs= 48 ef= 1 es= 1 fs= 1
Groups:
8efs + ef + es + fs
10efs
10efs
10efs
10efs
Case 9: Everybody speaks all three languages.
efs= 50
Groups:
10efs
10efs
10efs
10efs
10efs
|
Posted by Penny
on 2004-11-13 13:34:26 |