264 This 2x3 grid has an interesting
200 property: 264x200 = 22x60x40.
Build a similar grid using all digits from 2 to 7.
(In reply to
solution and extension--computer search--spoiler by Charlie)
If we allow repeated digits and leading zeros (but exclude those where the product itself is zero), these come up:
001 195 930 001 168 001 264 240 280 370
288 300 015 378 400 784 200 028 048 048
003 495 567 960 126 153 154 372 273 492
798 400 400 048 110 110 160 120 180 160
544 714 189 648 675 588 688 135 194 156
180 075 640 350 350 640 660 154 276 295
567 576
432 444
FOR d1 = 0 TO 9
FOR d2 = d1 TO 9
FOR d3 = d2 TO 9
FOR d4 = d3 TO 9
FOR d5 = d4 TO 9
FOR d6 = d5 TO 9
a$ = LTRIM$(STR$(d1)) + LTRIM$(STR$(d2)) + LTRIM$(STR$(d3)) + LTRIM$(STR$(d4)) + LTRIM$(STR$(d5)) + LTRIM$(STR$(d6))
h$ = a$
DO
tp = VAL(LEFT$(a$, 3))
bt = VAL(RIGHT$(a$, 3))
lt = VAL(MID$(a$, 1, 1) + MID$(a$, 4, 1))
md = VAL(MID$(a$, 2, 1) + MID$(a$, 5, 1))
rt = VAL(MID$(a$, 3, 1) + MID$(a$, 6, 1))
IF tp * bt = lt * md * rt AND tp * bt <> 0 THEN
col = (ct MOD 10) * 8 + 1
row = (ct \ 10) * 3 + 4
LOCATE row, col
tp$ = RIGHT$("0000" + LTRIM$(STR$(tp)), 3)
PRINT tp$;
LOCATE row + 1, col
bt$ = RIGHT$("0000" + LTRIM$(STR$(bt)), 3)
PRINT bt$;
ct = ct + 1
END IF
permute a$
LOOP UNTIL a$ = h$
NEXT
NEXT
NEXT
NEXT
NEXT
NEXT
|
Posted by Charlie
on 2005-03-22 14:34:07 |