If you must pay an amount in coins, the "intuitive" algorithm is: pay as much as possible with the largest denomination coin, and then go on to pay the rest with the other coins. For example, if there are 25, 5 and 1 cent coins, to pay someone 32 cents, you'd first give him a 25 cents coin, then one 5 cent coin, and finally two 1 cent coins.)
However, this doesn't always end paying with as few coins as possible: if we had 25, 10 and 1 cent coins, paying 32 cents with the "intuitive" algorithm would use 8 coins, while three 10 cent coins and two 1 cent coins would be better.
We can call a set "intuitive", if the "intuitive algorithm" always pays out any amount with as few coins as possible.
The problem: give an algorithm that allows you to decide that {25,5,1} is an "intuitive" set, while {25,10,1} isn't.
I think it's enough intuitive the criterion of "divisibility": each coin has to be multiple of the inmediat precedent in the sequence of coins, because in this case it's always convenient to chose the higher coin.
|
Posted by armando
on 2005-03-30 13:21:39 |