All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Logic
The logician's favorite game (Posted on 2005-03-18) Difficulty: 3 of 5
A logician has a favorite game to play at parties. He shows a set of solidly colored stickers to all his logician friends. Each logician, without looking, puts a random sticker on his/her own back. Each logician can only see the stickers on other people's backs, and no one can look at the unused stickers. The logicians take turns announcing whether they can deduce their own color. The game ends when someone announces he/she can deduce his/her own color.

One time while playing this game, no one had yet ended the game even though everyone had a turn. Should they continue to take second turns, or should they just give up and start a new game? Prove that it is impossible for a game that hasn't ended after everyone's first turn to ever end, or provide a counterexample.

See The Solution Submitted by Tristan    
Rating: 3.2500 (4 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution a solution | Comment 22 of 29 |
Answer: They should give up and start a new game, 
it is impossible for the game to end after the first
round in this case.

Prove: Simple, they take turns announcing "I CAN deduce
my color" or "I CANNOT deduce my color". Assuming that
no one would answer "cannot" until they were sure of
their inability to deduce their own color, and that
the game only 'ends' when someone answers "can"
independant of their guess or its accuracy!

  Posted by michelle on 2005-04-11 06:22:51
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (1)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (6)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information