Simplify the product A*B*C*D*E*F
A = (√2)
B = (√(2-√2))
C = (√(2-√(2+√2)))
D = (√(2-√(2+√(2+√2))))
E = (√(2-√(2+√(2+√(2+√2)))))
F = (√(2+√(2+√(2+√(2+√2)))))
A = sqrt(2) ===> A^2 = 2
B = sqrt(2 - sqrt(2))
A/B = sqrt(2)/(sqrt(2 - sqrt(2))) = sqrt(2)*[sqrt(2 + sqrt(2))]/[sqrt(4 - 2)] = sqrt(4 + 2*sqrt(2))/sqrt(2) = sqrt(4 + 2*A)/A
B^2 = 2 - sqrt(2) = 2 - A
A * B = sqrt(2) * sqrt(2 - sqrt(2)) = sqrt(4 - 2*sqrt(2)) = sqrt (4 - 2*A)
B = B * (sqrt(2 + sqrt(2))/(sqrt(2 + sqrt(2))
B = sqrt(4 - 2)/(sqrt(2 + sqrt(2)) = sqrt(2)/(sqrt(2 + sqrt(2))
B = A / (sqrt(2 + sqrt(2))
sqrt(2 + sqrt(2)) = A / B.
C = sqrt(2 - A/B)
E * F = D (already showed in previous comment)
D * E * F = D^2 = 2 - sqrt(2 + A/B)
P = A * B * sqrt(2 - A/B) * [2 - sqrt(2 + A/B)]
P = [sqrt(4 - 2*A) * sqrt(2 - A/B)] * [2 - sqrt(2 + A/B)]
P = [sqrt(8 - 4*A/B - 4*A + 2*A^2/B)] * [2 - sqrt(2 + A/B)]
P = [sqrt(8 - 4*A/B - 4*A + 4/B] * [2 - sqrt(2 + A/B)]
P = 2 * sqrt(8 - 4*A/B - 4*A + 4/B) - sqrt(16 + 8*A/B - 8*A/B - 4*A^2/B^2 - 8*A - 4*A^2/B + 8/B + 4*A/B^2)
A^2/B^2 = 2 + sqrt(2) = 2 + A
A/(B^2) = 1 + A
P = 2 * sqrt(8 - 4*A/B - 4*A + 4/B) - sqrt(16 - 8 - 4*A - 8*A - 8/B + 8/B + 4 + 4*A)
P = 2 * sqrt(8 - 4*A/B - 4*A + 4/B) - sqrt(12 - 8*A)
Until here is correct...P = 0,01623...
I'm tired today. I"ll continue tomorrow !
|
Posted by pcbouhid
on 2005-05-15 23:07:40 |