All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
A question of primes (Posted on 2005-06-08) Difficulty: 2 of 5
Find the smallest integer n that makes 11 x 14^n + 1, a prime number, or, prove that it doesn't exist.

See The Solution Submitted by pcbouhid    
Rating: 2.8571 (7 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution Modulo solution | Comment 3 of 13 |
Consider f(n) = 11 x 14^n + 1, modulo 15.
f(n) = 11 x (-1)^n + 1 = 12 or 5 (mod 15).
Hence f(n) = 0 (mod 3) or 0 (mod 5), is greater than 5 for all n, and is always composite.
Edited on June 9, 2005, 12:36 pm
  Posted by Nick Hobson on 2005-06-09 12:30:05
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information