Can you partition the numbers 1, 2, 3, ... nē in n separate subsets, each with n numbers, all subsets having the same sum?
In the array below, each column represents one set :
1 2 3 ..... n
2n n + 1 n + 2 ..... 2n - 1
3n - 1 3n 2n + 1 ..... 3n - 2
........... ........... .......... ..... ..........
........... ........... .......... ...... ..........
(n-1)n + 2 (n-1)n + 3 (n-1)n + 4 ..... (n-1)n + 1
The columns of the above array constitute the desired grouping.
To prove this, we write another array that is derived from the previous one in the following way : Subtract 0 from each element in the first row, subtract n from each element in the second row, subtract 2n from each element in the third row, ..., subtract (n-1)n from each element in the last (nth) row.
This gives :
1 2 3 ..... n
n 1 2 ..... n-1
n-1 n 1 ..... n-2
.......... ......... ......... ...... ............
.......... ......... ......... ...... ............
2 3 4 ...... 1
Note that each column in the derived array is a permutation of the numbers 1, 2, ..., n. Hence the sum of the elements in each column of the original array is :
S = (1 + 2 + 3 + ... + n) + (0 + n + 2n + ... + (n-1)n) = n(n + 1)/2 + n * n(n - 1)/2 = n(n^2 + 1)/2.
|
Posted by pcbouhid
on 2005-08-29 03:06:53 |