Harry, Tom and I each replaced each asterisk in the diagram below with a single digit, such that the two horizontal 4-digit numbers, the horizontal 3-digit number and the vertical 5-digit number were all perfect cubes:
****
*
***
*
****
We each found a different solution that used exactly nine of the ten digits 0-9. Harry's unused digit was the same as Tom's.
What was my solution?
The cubes can only be:
3-digit cubes: 125 / 216 / 343 / 512 / 729.
4-digit cubes: 1000 / 1331 / 1728 / 2197 / 2744 / 3375 / 4096 / 4913 / 5832 / 6859 / 8000 / 9261.
5-digit cubes: 10648 / 12167 / 13824 / 15625 / 17576 / 19583 / 21952 / 24389 / 27000 / 29791 / 32768 / 35937 / 39304 / 42875 / 46656 / 50653 / 54872 / 59319 / 64000 / 68921 / 74088 / 79507 / 85184 / 91125 / 97336.
It seems that there is a lot of possibilities, but in fact there are only very few to be analyzed. The number of 3-digit cubes (5) invites us to approach the problem from them.
Letīs call the 3-digit middle cube, MC; the 5-digit vertical cube, VC; the 4-digit upper cube, UC; the 4-digit bottom cube, BC; and the missing digits, MD. We have:
MC VC UC BC MD ----------------------------------------------------- a) 125 17576 1331 4096 (8) b) 9261 4096 (3,8) c) 79507 2197 2197 (3,4,6,8) d) 216 15625 1331 3375 (0,4,8,9) e) 9261 3375 (0,4,8) f) 19683 1331 4913 (0,5,7) g) 9261 4913 (0,4,5,7) h) 46656 2744 4096 (3,8) i) 50653 3375 4913 (8) j) 343 24389 5832 6859 (0,1,7) k) 39304 4913 2744 (5,6,8) l) 59319 3375 6859 (0,2) m) 97336 6859 4096 (1,2) n) 729 21952 5832 5832 (0,4,6) o) 35937 4913 2197 (0,6,8) p) 68921 4096 1331 (5) q) 9261 (3,5)Observe that we didnīt use the 3-digit cube 512, because none of the 5-digit cubes has a "2" as its middle digit. The unique cases where only one digit is missing are the cases a(8), i(8), and p(5). And since the missing digits in your friendīs solutions are equal, they found (a) and (i), and your solution is (p). friend1 friend2 you 1331 3375 4096 7 0 8 125 216 729 7 5 2 4096 4913 1331
Edited on November 19, 2005, 6:02 pm
|
Posted by pcbouhid
on 2005-11-19 07:47:34 |