All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Shapes
Circular Fun (Posted on 2005-07-28) Difficulty: 2 of 5
When you draw three circles of radius r such that all three are externally tangent, what is the area of the shape in the center in terms of r?

See The Solution Submitted by Justin    
Rating: 3.2857 (7 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
The solution | Comment 17 of 19 |

When the 3 circles touch each other externally and have the same radius r then on joining their centres we get an equilateral triangle whose sides are 2r. The area of the equilateral triangle is (2(3^1/2)r^2).Since it is an equilateral triangle so all the angles are 60¨¬.So all the sectors have angle 60¨¬ between them and all are equal in area. Therefore the area of the three sectors is       (¥ð(r^2)/6)*3.Therefore the area of the figure is                       (2(3^(1/2))r^2)-(¥ð(r^2)/2).


  Posted by akash on 2005-12-31 12:09:42
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information