Let ABCD be an isosceles trapezoid with AB parallel to CD, angle ADC equal to angle BCD and AD = DC = CB. Let M be the midpoint of BC and N be the midpoint of CD.
If AB=MN=1 then how long is CD?
Let x = |BM| = |CM| = |CN|, y = |BN|,
p = angle CNM, and t = angle BNM.
From triangle CNM:
2*x = 1/cos(p) (1)
From triangle ABN:
2*y = 1/cos(p+t) (2)
From triangle BNM:
x/sin(t) = 1/sin(p-t) (3)
y/sin(p) = 1/sin(p-t) (4)
Combining (1) and (3) we get
sin(p-t) = 2*cos(p)*sin(t)
or
tan(t) = tan(p)/3 (5)
Combining (2) and (4) we get
sin(p-t) = 2*cos(p+t)*sin(p)
or
tan(p) - tan(t) = 2*sin(p)*(1 - tan(p)*tan(t)) (6)
Combining (5) and (6) we get
4*cos(p)^2 - cos(p) - 1 = 0
or
1 + sqrt(17)
cos(p) = --------------
8
Therefore,
8
|CD| = 2*x = -------------- ~= 1.56155
1 + sqrt(17)
|
Posted by Bractals
on 2006-01-02 12:25:56 |