A mathematician who was exceedingly fond of the number five set to work trying to express as many consecutive integers using no numerals besides '5', and only up to five of them. She allowed herself to use any standard mathematical notation she knew, as long as it didn't contain any numerals. For example, she could use the symbol for 'square root', but not 'cube root' (because it contains a '3'). She determined that the highest consecutive integer she could express this way was 36. Her last few calculations were as follows:
- 31 = 5*5 + 5 + (5/5)
- 32 = 55*.5 + 5 - .5
- 33 = (55 + 5) * .55
- 34 = 5!/5 + 5/.5
- 35 = (5 + (5+5)/5) * 5
- 36 = 5*5 + 55/5
- 37 = ?
Was she correct in thinking 36 was the highest consecutive integer she could express this way? Can you express 37 using only up to
five 5's?
Note: The intention here is to find an exact expression, so rounding expressions like [] "greatest integer" are not allowed.
Note: Can you do it without using letters of any kind (x, log, lim, sum, etc.)?
(In reply to
979-1000 by Dej Mar)
Excellent! I tried to get 979-1000 without multifactorial, and ran into problems. I struggled to get just a few done. Just as I brought about the use of primorial, I congratulate you on incorporating multifactorials. And congrats to everyone for doing such a great job elaborating on this problem. Now, the question is, how much further, with the current set of notation, can we go?
|
Posted by Justin
on 2006-02-18 21:05:02 |