123 is a peculiar integer, because 1+2+3=1*2*3. 1412 is also peculiar, since 1+4+1+2=1*4*1*2.
A simple question: are there infinitely many such numbers?
A not so simple question: if so, are there such numbers for ANY number of digits?
(In reply to
An extra question by e.g.)
24 34 35 44 48 66 67 75 76 78 80 82 91 92 97 103 104 105 106
112 114 122 123 124 126 129 138 140 141 142 143 144 148 152 158
159 160 162 163 164 167 171 172 174 175 186 187 190 191 192 193
194 196 198 210 214 215 216 217 218 219 220 221 222 223 231 232
234 241 249 250 251 252 254 256 258 260 261 262 264 265 268 269
272 280 281 282 283 284 285 289 290 291 292 293 294 295 296 298
299 300 303 304 311 315 316 317 319 326 327 328 329 330 331 332
333 334 336 337 338 339 340 342 343 350 351 352 353 354 355 356
357 358 360 362 364 366 378 379 380 381 382 383 390 391 392 394
395 396 397 398 399 400 401 402 403 407 408 409 410 411 413 423
424 426 427 429 430 438 439 440 441 442 443 444 445 446 447 448
449 450 451 452 453 454 455 456 457 458 459 460 461 462 470 472
474 476 477 478 479 480 481 482 484 492 493 504 505 506 507 508
510 511 512 513 514 515 516 517 518 519 520 521 525 529 530 531
532 533 534 535 536 537 538 539 540 541 543 547 548 550 551 552
555 556 567 568 569 573 574 575 576 577 578 579 580 581 582 588
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
605 606 607 608 610 612 614 616 617 618 619 620 622 638 639 640
641 642 643 644 645 646 647 648 649 650 651 652 660 662 663 664
665 666 668 669 670 671 672 673 674 675 676 677 678 679 680 681
682 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
701 710 711 712 714 715 716 718 719 720 721 722 723 724 725 726
727 728 729 730 731 732 734 739 743 744 745 746 747 759 760 761
762 763 765 769 770 771 772 773 774 775 776 777 778 779 780 781
784 788 790 792 794 796 798 799 800 801 802 803 804 805 806 807
808 809 810 811 812 813 814 815 816 817 818 819 820 826 827 828
829 830 831 832 833 834 835 836 837 838 839 840 841 842 854 855
856 858 859 860 862 864 866 867 868 869 870 871 872 873 874 876
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
919 920 921 922 923 924 926 927 928 930 931 932 933 934 935 936
937 938 939 949 953 957 963 964 965 966 967 968 969 970 971 972
973 974 975 976 977 978 979 980 982 983 987 995 996 997 998 999
produced by:
DEFDBL A-Z
DIM numD(1000)
CLS
FOR a = 1 TO 9
FOR b = a TO 9
FOR c = b TO 9
FOR d = c TO 9
FOR e = d TO 9
FOR f = e TO 9
FOR g = f TO 9
FOR h = g TO 9
FOR i = h TO 9
FOR j = i TO 9
p = a * b * c * d * e * f * g * h * i * j
dig = p - (a + b + c + d + e + f + g + h + i + j) + 10
IF dig <= 1000 THEN numD(dig) = 1
NEXT
NEXT
NEXT
NEXT
NEXT
NEXT
NEXT
NEXT
NEXT
NEXT
FOR i = 10 TO 1000
IF numD(i) = 0 THEN PRINT i;
NEXT
|
Posted by Charlie
on 2006-08-22 14:24:01 |