All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Repeating decimals (Posted on 2006-09-25) Difficulty: 3 of 5
The decimal expansion of 1/271 repeats with a period of length 5:
.003690036900369 ...

However, it is not the smallest number q for which the decimal expansion of 1/q has a repetition length of 5.

Find the smallest q so that the decimal expansion of 1/q has repetition length n for each of {1, 2, ..., 10}

Is there a simple way of finding such a number?

See The Solution Submitted by Jer    
Rating: 4.5000 (2 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
re(4): General solution | Comment 9 of 12 |
(In reply to re(3): General solution by Old Original Oskar!)

But it must be the smallest such that meets these requirements you have specifiied -- i.e. (using Jer's notation) the smallest natural number q such that 1/q has repetition length n is the least divisor of 2^n-1 that does not divide any of the numbers 2^k-1 for 0<k<n.
  Posted by Richard on 2006-09-26 23:07:48

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information