S(n)=F(n)^2, the n-th Fibonacci number squared. To see why, we can substitute in the equation for S(n+3) getting:
F(n+3)²=2F(n+2)²+2F(n+1)²-F(n)²
...=F(n+2)²+2F(n+2)F(n+1)+F(n+1)²
+F(n+2)²-2F(n+2)F(n+1)+F(n+1)²-F(n)²
...=(F(n+2)+F(n+1))²+(F(n+2)-F(n+1))²-F(n)²
...=F(n+3)²+F(n)²-F(n)²
...=F(n+3)²
QED