All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Games
Always greater (Posted on 2007-04-14) Difficulty: 3 of 5
Two players play a game in which they alternate calling out positive integers ≤ N, according to:

  • The first player must always call out odd numbers.
  • The second player must always call out even numbers.
  • Each player must call out a number greater than the previously called number (except, obviously, the very first time).
  • The player who cannot call out a number loses.
  • How many different possible games are there? And, if we count a turn each time a player calls out a number, how many different K-turns games are there?

    Note: the game is not very fun to play (why?) but the puzzles are interesting!

    See The Solution Submitted by Federico Kereki    
    Rating: 3.5000 (2 votes)

    Comments: ( Back to comment list | You must be logged in to post comments.)
    Solution Answer to the first question | Comment 2 of 6 |

    There are an infinite number of games as there are an infinite number of positive integers, but the number of different games can be expressed as that of the Fibonacci sequence --
    where N = 1, 2, 3, 4, 5, 6, ...
    the number of different games are 1, 1, 2, 3, 5, 8,....

     


      Posted by Dej Mar on 2007-04-14 13:57:00
    Please log in:
    Login:
    Password:
    Remember me:
    Sign up! | Forgot password


    Search:
    Search body:
    Forums (0)
    Newest Problems
    Random Problem
    FAQ | About This Site
    Site Statistics
    New Comments (3)
    Unsolved Problems
    Top Rated Problems
    This month's top
    Most Commented On

    Chatterbox:
    Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information