Substitute the letters S, E and N by valid digits to satisfy the following alphametic equation.
(SEEN)Base 8 - (SEEN)Base 5
= (SEEN)Base 7
NOTE: S is NOT zero.
There are only 48 substitutions to check out, given that no digit can exceed 4, as each must be acceptable within a base-5 number:
subst decimal of diff decimal of
b8 b5 b7
1002 514 - 127 = 387 345
1003 515 - 128 = 387 346
1004 516 - 129 = 387 347
1220 656 - 185 = 471 455
1223 659 - 188 = 471 458
1224 660 - 189 = 471 459
1330 728 - 215 = 513 511
1332 730 - 217 = 513 513 <--
1334 732 - 219 = 513 515
1440 800 - 245 = 555 567
1442 802 - 247 = 555 569
1443 803 - 248 = 555 570
2001 1025 - 251 = 774 687
2003 1027 - 253 = 774 689
2004 1028 - 254 = 774 690
2110 1096 - 280 = 816 742
2113 1099 - 283 = 816 745
2114 1100 - 284 = 816 746
2330 1240 - 340 = 900 854
2331 1241 - 341 = 900 855
2334 1244 - 344 = 900 858
2440 1312 - 370 = 942 910
2441 1313 - 371 = 942 911
2443 1315 - 373 = 942 913
3001 1537 - 376 = 1161 1030
3002 1538 - 377 = 1161 1031
3004 1540 - 379 = 1161 1033
3110 1608 - 405 = 1203 1085
3112 1610 - 407 = 1203 1087
3114 1612 - 409 = 1203 1089
3220 1680 - 435 = 1245 1141
3221 1681 - 436 = 1245 1142
3224 1684 - 439 = 1245 1145
3440 1824 - 495 = 1329 1253
3441 1825 - 496 = 1329 1254
3442 1826 - 497 = 1329 1255
4001 2049 - 501 = 1548 1373
4002 2050 - 502 = 1548 1374
4003 2051 - 503 = 1548 1375
4110 2120 - 530 = 1590 1428
4112 2122 - 532 = 1590 1430
4113 2123 - 533 = 1590 1431
4220 2192 - 560 = 1632 1484
4221 2193 - 561 = 1632 1485
4223 2195 - 563 = 1632 1487
4330 2264 - 590 = 1674 1540
4331 2265 - 591 = 1674 1541
4332 2266 - 592 = 1674 1542
So the answer is 1332 (S = 1; E = 3; N = 2); the decimal equivalent subtraction is 730 - 217 = 513, which matches the decimal conversion of the base-7 interpretation, 513.
FOR s = 1 TO 4
b8a = INT(8 ^ 3 + .5) * s
b5a = INT(5 ^ 3 + .5) * s
b7a = INT(7 ^ 3 + .5) * s
FOR e = 0 TO 4
IF e <> s THEN
b8b = b8a + INT(8 ^ 2 + 8 + .5) * e
b5b = b5a + INT(5 ^ 2 + 5 + .5) * e
b7b = b7a + INT(7 ^ 2 + 7 + .5) * e
FOR n = 0 TO 4
IF n <> s AND n <> e THEN
b8c = b8b + n
b5c = b5b + n
b7c = b7b + n
ct = ct + 1
seen$ = LTRIM$(STR$(s)) + LTRIM$(STR$(e)) + LTRIM$(STR$(e)) + LTRIM$(STR$(n))
PRINT USING "## & #### - ### = #### #### "; ct; seen$; b8c; b5c; b8c - b5c; b7c;
IF b8c - b5c = b7c THEN
PRINT "<--"
ELSE
PRINT
END IF
END IF
NEXT
END IF
NEXT
NEXT
|
Posted by Charlie
on 2007-05-10 11:33:53 |