In the infinite sequence
a, b, (a + b)/2, (a + 3b)/4, . . .
each term after the second is the arithmetic mean of the two previous terms.
Find the limit of the sequence in terms of real numbers a and b.
It appears to be (a+2b)/3, as follows:
For a=0 and b=1, the sequence from there is:
0.5
0.75
0.625
0.6875
0.65625
0.671875
0.6640625
0.66796875
0.666015625
0.6669921875
0.66650390625
0.666748046875
0.6666259765625
0.66668701171875
0.666656494140625
0.6666717529296875
0.66666412353515625
0.666667938232421875
0.6666660308837890625
0.6666669845581054687
0.6666665077209472656
0.6666667461395263671
0.6666666269302368164
0.6666666865348815917
0.6666666567325592041
0.6666666716337203979
0.666666664183139801
0.6666666679084300994
0.6666666660457849502
0.6666666669771075248
0.6666666665114462375
0.6666666667442768812
0.6666666666278615593
0.6666666666860692203
0.6666666666569653898
0.666666666671517305
0.6666666666642413474
0.6666666666678793262
0.6666666666660603368
0.6666666666669698315
0.6666666666665150842
0.6666666666667424578
0.666666666666628771
0.6666666666666856144
from
10 A=0:B=1
20 for I=1 to 44
30 C=(A+B)/2
40 print C
50 A=B:B=C
60 next
This case appears to approach 2/3, and since the series is linearly related to a and b, the general case would be 2/3 of the way from a to b, or (a+2b)/3.
The first few terms after a and b are
(a+b)/2
(a+3b)/4
(3a+5b)/8
(5a+11b)/16
(11a+21b)/32
(21a+43b)/64
(43a+85b)/128
(85a+171b)/256
An extended sequence of coefficients of a and b and their ratio is:
coeff. of a coeff. of b coeff of a / coeff of b
1 1 1.00000000000000000000
1 3 0.33333333333333333333
3 5 0.60000000000000000000
5 11 0.45454545454545454545
11 21 0.52380952380952380952
21 43 0.48837209302325581395
43 85 0.50588235294117647059
85 171 0.49707602339181286550
171 341 0.50146627565982404692
341 683 0.49926793557833089312
683 1365 0.50036630036630036630
1365 2731 0.49981691688026363969
2731 5461 0.50009155832265152902
5461 10923 0.49995422502975373066
10923 21845 0.50002288853284504463
21845 43691 0.49998855599551395024
43691 87381 0.50000572206772639361
87381 174763 0.49999713898250773905
174763 349525 0.50000143051283885273
349525 699051 0.49999928474460375566
699051 1398101 0.50000035762795391749
1398101 2796203 0.49999982118608699011
2796203 5592405 0.50000008940697249216
5592405 11184811 0.49999995529651775072
11184811 22369621 0.50000002235174212384
22369621 44739243 0.49999998882412918788
44739243 89478485 0.50000000558793546851
89478485 178956971 0.49999999720603228136
178956971 357913941 0.50000000139698386322
357913941 715827883 0.49999999930150806936
715827883 1431655765 0.50000000034924596556
1431655765 2863311531 0.49999999982537701728
2863311531 5726623061 0.50000000008731149138
5726623061 11453246123 0.49999999995634425432
11453246123 22906492245 0.50000000002182787284
22906492245 45812984491 0.49999999998908606358
45812984491 91625968981 0.50000000000545696821
91625968981 183251937963 0.49999999999727151589
183251937963 366503875925 0.50000000000136424205
366503875925 733007751851 0.49999999999931787897
733007751851 1466015503701 0.50000000000034106051
1466015503701 2932031007403 0.49999999999982946974
2932031007403 5864062014805 0.50000000000008526513
5864062014805 11728124029611 0.49999999999995736744
and the denominator is always the sum of the two coefficients.
from
5 point 5
10 Ap=0:Bp=1
20 A=1:B=1
30 for I=1 to 44
40 An=2*Ap+A:Bn=2*Bp+B
50 print using(15,0),A,B,using(1,20),A/B
60 Ap=A:A=An:Bp=B:B=Bn
70 next
Edited on May 23, 2007, 10:11 am
|
Posted by Charlie
on 2007-05-23 10:03:33 |