From the law of sines,
q p p p
-------- = -------- = --------- = ----------------
sin(Q) sin(P) sin(2Q) 2 sin(Q)cos(Q)
or
cos(Q) = p/2q
From the law of cosines,
q^2 = p^2 + r^2 - 2pr cos(Q)
= p^2 + r^2 - 2pr (p/2q)
or
p^2(q - r) = q(q + r)(q - r)
If q != r, then p^2 = q(q + r).
If q = r, then Q = R = 45 and P = 90
and therefore p^2 = q^2 + r^2 = q^2 + qr
= q(q + r)
Thus, p^2 = q(q + r) whether q = r or not.
|
Posted by Bractals
on 2007-06-11 12:49:11 |