Lets call angle PQR (¥á) and angle QPR (2¥á). By the law of sines:
p / sin(2¥á) = q / sin(¥á) or p / [2*sin(¥á)cos(¥á)] = q / sin(¥á)
cos(¥á) = p/(2q)
By the law of cosines:
q©÷ = r©÷ + p©÷ - 2pr*cos(¥á) or q©÷ = r©÷ + p©÷ - p©÷r/q
q©÷ = r©÷ + p©÷(1 - r/q)
p©÷ = (q©÷ - r©÷) / (1 - r/q)
p©÷ = [(q + r)*(q - r)] / [(q - r)/q]
p©÷ = (q + r) / [1/q]
p©÷ = q(q + r)
By definition, ¥á < 60¨¬.
blackjack
flooble's webmaster puzzle