A point S is taken on the side QR of triangle PQR such that RS = 2SQ. It is known that Angle PQR = 45o and Angle SPQ = 15o
Determine Angle PRQ.
We know the sum of angles in a triangle is 180°, therefore Angle PSQ = (180° - (45° + 15°)) = 120°.
Using the law of sines the length of PQ can be found:
QS/sin(Angle QPS) = PQ/sin(Angle PSQ)
QS/sin(15°) = PQ(sin(120°)
(QS*(sin(120°))/sin(15°) = PQ
3.346*QS ~= PQ
Using the law of cosines the length of PR can be found:
PR2 = PQ2 + QR2 - 2*PQ*QR*cos(Angle PQR)
PR2 ~= (3.346*QS)2 + (3*QS)2 - 2*(3.346*QS)*(3*QS)*cos(45°)
PR2 ~= 6*QS2
PR ~= SQRT(6)*QS
Again, using the law of cosines, Angle PRQ can be found:
PQ2 = PR2 + QR2 - 2*PR*QR*cos(Angle PRQ)
11.196*QS2 ~= 6*QS2 + 9*QS2 - (14.7*QS2)*cos(Angle PRQ)
(3.804/14.7) ~= cos(Angle PRQ)
arccos(0.2588) ~= Angle PRQ
Angle PRQ ~= 75°
Edited on October 30, 2007, 12:38 am
|
Posted by Dej Mar
on 2007-10-30 00:06:39 |