EFGH is a convex quadrilateral having diagonals EG and FH. It is known that EF = GH, while EH/FG = √3 + 1 and Angle GHE - Angle HEF = 30o.
Determine the value of (Angle EFG - Angle FGH).
Using the law of cosines,
|EG|^2 = |EH|^2 + |HG|^2 - 2|EH||HG|cos(EHG)
= |EH|^2 + |HG|^2 - 2|EH||HG|cos(t+15)
= |EF|^2 + |FG|^2 - 2|EF||FG|cos(EFG)
= |EF|^2 + |FG|^2 - 2|EF||FG|cos(180-[t-x])
|FH|^2 = |FE|^2 + |EH|^2 - 2|FE||EH|cos(FEH)
= |FE|^2 + |EH|^2 - 2|FE||EH|cos(t-15)
= |HG|^2 + (sqrt(3)+1)^2*|EH|^2
- 2(sqrt(3)+1)*|HG||EH|cos(t-15)
= |FG|^2 + |GH|^2 - 2|FG||GH|cos(FGH)
= |FG|^2 + |GH|^2 - 2|FG||GH|cos(180-[t+x])
,where 2x = Angle EFG - Angle FGH.
Combining the above two equations we get
cos(t-x) - cos(t+x) =
(sqrt(3)+1)[cos(t-15) - cos(t+15)]
or
sin(x) = (sqrt(3)+1)sin(15)
or
sin(x)^2 = (sqrt(3)+1)^2*sin(15)^2
= 2(sqrt(3)+2)*[1-cos(30)]/2
= 1/2
Therefore, Angle EFG - Angle FGH = 90 degrees.
|
Posted by Bractals
on 2007-11-08 14:20:06 |