All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Shapes
Cutting a Rectangle (Posted on 2007-12-07) Difficulty: 3 of 5
How many ways can a 3x4 rectangle be cut into two polyominoes by cutting along the grid lines? (Not counting reflections and rotations.)
Examples of valid cuts are shown in the first row and invalid cuts are shown in the second row:
+--+--+--+--+   +--+--+--+--+   +--+--+--+--+   +--+--+--+--+
|     |     |   |           |   |  |        |   |  |        |
+  +  +  +  +   +  +--+  +  +   +  +--+--+  +   +  +  +  +  +
|     |     |   |  |  |     |   |        |  |   |  |        |
+--+--+  +  +   +  +--+  +  +   +  +  +--+  +   +  +  +  +  +
|           |   |           |   |     |     |   |  |        |
+--+--+--+--+   +--+--+--+--+   +--+--+--+--+   +--+--+--+--+

+--+--+--+--+   +--+--+--+--+   +--+--+--+--+   +--+--+--+--+
|     |     |   |           |   |  |        |   |     /     |
+  +  +  +  +   +--+--+  +  +   +  +  +--+  +   +  + /+  +  +
|     |     |   |  |  |     |   |        |  |   |   /       |
+--+--+  +  +   +  +--+  +  +   +  +--+--+  +   +  +  +  +  +
|     |     |   |           |   |     |     |   |  |        |
+--+--+--+--+   +--+--+--+--+   +--+--+--+--+   +--+--+--+--+

See The Solution Submitted by Brian Smith    
Rating: 4.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
re(4): Solutions good -- explanation | Comment 7 of 9 |
(In reply to re(3): Solution missed some by Jer)

One solution is to count the special cases (doughnut shapes and reflectable shapes) separately. Then just separate the counting by where the cut enters and exits the rectangle.

It sounds like everyone below got this solution.

Edited on December 8, 2007, 6:38 pm
  Posted by Gamer on 2007-12-08 18:37:09

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information