Let X
1, X
2, ... , X
n be n≥2 distinct points on a circle C
with center O and radius r. What is the
locus of points P inside C such that
∑
ni=1 |X
iP|/|PY
i| = n
,where the line X
iP also intersects C at point Y
i.
With three equally spaced points there are threee lobes. I don't know if these correspond to polynomial or Erdos lemniscates (http://en.wikipedia.org/wiki/Polynomial_lemniscate), but that idea is intriguing.
------- -------
--- ********* ---
- ************* -
- ***************** -
- ******************* -
- ********************* -
- ********************* -
- *********************** -
*************************
- ************************* -
*************************
***************************
- *************************** -
- *************************** -
- *************************** -
- *************************** -
- *************************** -
- *************************** -
***************************
***************************
***************************
- *************************** -
***************************
***************************
- ************************* -
*************************
- ************************* -
***********************
- *********************** -
***********************
- ********************* -
*********************
- ******************* -
*******************
*****************
- ***************** -
***************
***************
- ************* -
- ************* -
- *********** -
***********
*********
- ********* -
- ******* -
- ***** -
- *...* -
- ..***.. -
- . *** . -
- . * . -
- **.*******.** -
- ********************.*** ***.******************** -
- **************************.* *.************************** -
- *****************************.. ..***************************** -
- ******************************** ... ******************************** -
- ********************************** ********************************** -
- ********************************** ********************************** -
- *********************************** *********************************** -
************************************ ************************************
************************************ ************************************
- ************************************* ************************************* -
- ************************************ ************************************ -
- ************************************ ************************************ -
************************************ ************************************
************************************ ************************************
- ************************************ ************************************ -
*********************************** ***********************************
********************************** **********************************
- ********************************* ********************************* -
********************************* *********************************
- ******************************** ******************************** -
******************************* *******************************
-****************************** ******************************-
***************************** *****************************
-**************************** ****************************-
************************** **************************
-************************ ************************-
********************** **********************
******************** ********************
- ***************** ***************** -
************* *************
******** ********
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
--- ---
------- -------
|
Posted by Charlie
on 2007-12-12 22:06:32 |