Let X
1, X
2, ... , X
n be n≥2 distinct points on a circle C
with center O and radius r. What is the
locus of points P inside C such that
∑
ni=1 |X
iP|/|PY
i| = n
,where the line X
iP also intersects C at point Y
i.
Let (xi,yi) be the coordinates of Xi.
Equation of C:x²+y²=r² and (a,b) be the coordinates of P.
∑ni=1 |XiP|/|PYi| = n
=> ∑ni=1 |XiP|²/|PYi|*|XiP|= n
|PYi|*|XiP|= k(constant)
=> ∑ni=1 |XiP|² = k*n.
Consider a line through P and C(0,0).
k=(r+PO)*(r-PO) = r²-a²-b² (Since P is inside C)
|XiP|² = (a-xi)²+(b-yi)²=a²+b²-2axi-2byi+r²
Now the eqn becomes
∑ni=1(a²+b²-2axi-2byi+r²)=(r²-a²-b²)*n
=> 2a∑ni=1 xi +2b∑ni=1 yi = 2na²+2nb²
Now, the locus of P will be
(x/n)*∑ni=1 xi +(y/n)*∑ni=1 yi = x²+y²
It is a circular arc whose center is (∑ni=1 xi/2n,∑ni=1 yi/2n)
|
Posted by Praneeth
on 2007-12-14 08:25:37 |