W------------------------X
| * |
| A * |
| O |
| * * * B |
| * * * |
| * * * |
| * * * |
| * D * C * |
Z----------------Q-------Y
What is the minimum area of rectangle WXYZ if
all lengths are whole numbers, as are the areas of the similar triangles, denoted by A, B, C & D?
Let i, j, and k be integers with k^2 = i^2 + j^2.
The sides of the triangles are
Triangle k-side i-side j-side Area
XZW (kk)k (kk)i (kk)j ij(k^4)/2
ZOQ (jj)k (jj)i (jj)j i(j^5)/2
YXO (ik)k (ik)i (ik)j (i^3)j(k^2)/2
OYQ (ij)k (ij)i (ij)j (i^3)(j^3)/2
The area of the rectangle is ij(k^4)
If (i,j,k) = (3,4,5), we get the minimum area
The sides of the triangles are
Triangle k-side i-side j-side Area
XZW 125 75 100 3750
ZOQ 80 48 64 1536
YXO 75 45 60 1350
OYQ 60 36 48 864
The area of the rectangle is 7500.
|
Posted by Bractals
on 2008-03-18 10:45:53 |