Let ABCD be a
cyclic quadrilateral.
Let r
A, r
B, r
C, and r
D be the inradii of triangles BCD, CDA, DAB, and ABC respectively.
Prove that r
A + r
C = r
B + r
D.
Hi!
To prove to problem i use, once again, the relation :
In a triangle cos(A)+cos(B)+cos(C) = 1 + r/R (1)
See
http://perplexus.info/show.php?pid=5987&cid=39985
All the triangle involve in the problem (BCD, CDA, DAB, ABC) have the same cyclic radius (R).
Let note
<BAC = A2 ; <CAD = A1
< CBD = B2 ; <ABD = B1
<ACB = C1 ; <ACD = C2
<BDC = D1 ; <BDA = D2
From (1) relation we find
r(A) = R(cos(C)+cos(B2)+cos(D1)-1) ; r(B) = R(cos(D)+cos(C2)+cos(A1)-1)
r(C) = R(cos(A)+cos(B1)+cos(D2)-1) ; r(D) = R(cos(B)+cos(A2)+cos(C1)-1)
So the relation r(A)+r(C)=r(B)+r(D) became
cos(C)+cos(B2)+cos(D1)+cos(A)+cos(B1)+cos(D2) = cos(D)+cos(C2)+cos(A1)+cos(B)+cos(A2)+cos(C1)
This relation is obvious because
<A1=<B2 ; <A2=<D1 ; <B1=<C2 ; <C1=<D2 and cos(C)+cos(A)=0 ; cos(B) + cos(D) = 0.
Hence proved!
Edited on April 3, 2008, 11:59 am