A rectangle ABCD is circumscribed around a
rhombus AECF. The long sides of the rectangle coincide with two sides of the rhombus. Also, the rhombus and the rectangle share a common diagonal AC.
B E A
+-------+---------------+
| / /|
| / / |
| / / |
| / / |
| / / |
| / / |
|/ / |
+---------------+-------+
C F D
What are the smallest dimensions when all the lengths AB, BC, AE, AC and EF are integers?
Find a parameterization of all such integral rectangle/rhombus pairs.
Private Sub Form_Load()
Open "rectangle about rhombus 2.txt" For Output As #2
FontTransparent = False
For tot = 7 To 6000
CurrentX = 1: CurrentY = 1
Print tot;
For h = 1 To tot / 2
Visible = True
DoEvents
l = tot - h
diag1 = Int(Sqr(h * h + l * l) + 0.5)
If diag1 * diag1 = h * h + l * l Then
topR = Int(diag1 * diag1 / (2 * l) + 0.5)
If topR = diag1 * diag1 / (2 * l) Then
legA = 2 * topR - l
diag2 = Int(Sqr(legA * legA + h * h) + 0.5)
rhomSide = Sqr(h * h + (l - topR) * (l - topR))
If diag2 * diag2 = legA * legA + h * h Then
If rhomSide = topR Then
pu 5, l: pu 5, h: pu 5, topR: pu 5, diag1: pu 5, diag2: pu 5, rhomSide
pu 10, l * h: pu 20, l / h
Print #2,
End If
End If
End If
End If
Next
Next
Print
Print "done"
Close
End Sub
Sub pu(l, n)
s$ = LTrim(Str(n))
If Len(s$) < l Then
s$ = Right(Space$(l) + s$, l)
End If
Print #2, s$;
End Sub
Many results are found. The first few are:
width height
AB BC AE AC EF width*height width/height
32 24 25 40 30 768 1.33333333333333
64 48 50 80 60 3072 1.33333333333333
96 72 75 120 90 6912 1.33333333333333
128 96 100 160 120 12288 1.33333333333333
160 120 125 200 150 19200 1.33333333333333
192 144 150 240 180 27648 1.33333333333333
224 168 175 280 210 37632 1.33333333333333
288 120 169 312 130 34560 2.4
256 192 200 320 240 49152 1.33333333333333
288 216 225 360 270 62208 1.33333333333333
320 240 250 400 300 76800 1.33333333333333
Of the many others, the smallest for each ratio of width to height is found below, arranged in order of width/height ratio. Integral multiples of the dimensions result in the area being multiplied by the square of the linear multiple, but the width/height ratio remains the same. There are presumably more (besides just the multiples of these) if we allow the total of the height + width to exceed 6000. For a given ratio of width to height, all the other measurements are in proportion.
width height
AB BC AE AC EF width*height width/height
882 840 841 1218 1160 740880 1.05
32 24 25 40 30 768 1.33333333333333
450 240 289 510 272 108000 1.875
288 120 169 312 130 34560 2.4
2450 840 1369 2590 888 2058000 2.91666666666667
1152 336 625 1200 350 387072 3.42857142857143
3200 720 1681 3280 738 2304000 4.44444444444444
|
Posted by Charlie
on 2008-04-14 15:34:31 |