A rectangle ABCD is circumscribed around a
rhombus AECF. The long sides of the rectangle coincide with two sides of the rhombus. Also, the rhombus and the rectangle share a common diagonal AC.
B E A
+-------+---------------+
| / /|
| / / |
| / / |
| / / |
| / / |
| / / |
|/ / |
+---------------+-------+
C F D
What are the smallest dimensions when all the lengths AB, BC, AE, AC and EF are integers?
Find a parameterization of all such integral rectangle/rhombus pairs.
(In reply to
computer solution for part 1 by Charlie)
Changed
For h = 1 To tot / 2
to
For h = 1 To tot -1
to allow for heights that are greater than the width, producing the following additional values, when the total of the height plus width does not exceed 2000. However, in these cases AE exceeds AB, so the rhombus goes outside the bounds of the rectangle. The previous solution stands.
width height
AB BC AE AC EF width*height width/height
242 1320 3721 1342 7320 319440 .183333333333333
162 720 1681 738 3280 116640 .225
98 336 625 350 1200 32928 .291666666666667
288 840 1369 888 2590 241920 .342857142857143
50 120 169 130 312 6000 .416666666666667
128 240 289 272 510 30720 .533333333333333
18 24 25 30 40 432 .75
800 840 841 1160 1218 672000 .952380952380952
Again, these are not real solutions, but attempts to come up with solutions where the width is less than the height.
|
Posted by Charlie
on 2008-04-14 15:53:39 |