Assuming the constraints that A, B and C are all 3 digit numbers is meant as only positive integers of only three digits, the following are all the triples (A, B, C) with the values of n, X, and Y that meet the constraints:
( 100, 105, 145) n= 5, X= 20, Y= 29
( 119, 120, 169) n= 1, X= 119, Y= 169
( 238, 240, 338) n= 2, X= 119, Y= 169
( 357, 360, 507) n= 3, X= 119, Y= 169
( 476, 480, 676) n= 4, X= 119, Y= 169
( 595, 600, 845) n= 5, X= 119, Y= 169
( 696, 697, 985) n= 1, X= 696, Y= 985
If negative integers are permitted for triples (A, B, C), the following can also be included:
( 100, 105, -145) n= 5, X= 20, Y= -29
( 119, 120, -169) n= 1, X= 119, Y=-169
( 238, 240, -338) n= 2, X= 119, Y=-169
( 357, 360, -507) n= 3, X= 119, Y=-169
( 476, 480, -676) n= 4, X= 119, Y=-169
( 595, 600, -845) n= 5, X= 119, Y=-169
( 696, 697, -985) n= 1, X= 696, Y=-985
(-697, -696, 985) n= 1, X=-697, Y= 985
(-600, -595, 845) n= 5, X=-120, Y= 169
(-480, -476, 676) n= 4, X=-120, Y= 169
(-360, -357, 507) n= 3, X=-120, Y= 169
(-240, -238, 338) n= 2, X=-120, Y= 169
(-120, -119, 169) n= 1, X=-120, Y= 169
(-105, -100, 145) n= 5, X= -21, Y= 29
(-697, -696, -985) n= 1, X=-697, Y=-985
(-600, -595, -845) n= 5, X=-120, Y=-169
(-480, -476, -676) n= 4, X=-120, Y=-169
(-360, -357, -507) n= 3, X=-120, Y=-169
(-240, -238, -338) n= 2, X=-120, Y=-169
(-120, -119, -169) n= 1, X=-120, Y=-169
(-105, -100, -145) n= 5, X= -21, Y= -29
Edited on May 10, 2008, 12:54 am
|
Posted by Dej Mar
on 2008-05-08 23:45:38 |