All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
Set of triplets (Posted on 2008-05-08) Difficulty: 2 of 5

A2 + B2 = C2

where A=n*X, B=n*(X+1) and C=n*Y.

Determine triples (A,B,C) which satisfy the constraints of n,X,Y noting that A, B and C are all 3 digit numbers when n is 1 through 5.

See The Solution Submitted by brianjn    
Rating: 2.0000 (1 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Solution solution | Comment 4 of 8 |

Assuming the constraints that A, B and C are all 3 digit numbers is meant as only positive integers of only three digits, the following are all the triples (A, B, C) with the values of n, X, and Y that meet the constraints:

( 100,  105,  145)  n= 5, X=  20, Y=  29
( 119,  120,  169)  n= 1, X= 119, Y= 169
( 238,  240,  338)  n= 2, X= 119, Y= 169
( 357,  360,  507)  n= 3, X= 119, Y= 169
( 476,  480,  676)  n= 4, X= 119, Y= 169
( 595,  600,  845)  n= 5, X= 119, Y= 169

( 696,  697,  985)  n= 1, X= 696, Y= 985

If negative integers are permitted for triples (A, B, C), the following can also be included:

( 100,  105, -145)  n= 5, X=  20, Y= -29
( 119,  120, -169)  n= 1, X= 119, Y=-169
( 238,  240, -338)  n= 2, X= 119, Y=-169
( 357,  360, -507)  n= 3, X= 119, Y=-169
( 476,  480, -676)  n= 4, X= 119, Y=-169
( 595,  600, -845)  n= 5, X= 119, Y=-169
( 696,  697, -985)  n= 1, X= 696, Y=-985

(-697, -696,  985)  n= 1, X=-697, Y= 985
(-600, -595,  845)  n= 5, X=-120, Y= 169
(-480, -476,  676)  n= 4, X=-120, Y= 169
(-360, -357,  507)  n= 3, X=-120, Y= 169
(-240, -238,  338)  n= 2, X=-120, Y= 169
(-120, -119,  169)  n= 1, X=-120, Y= 169
(-105, -100,  145)  n= 5, X= -21, Y=  29

(-697, -696, -985)  n= 1, X=-697, Y=-985
(-600, -595, -845)  n= 5, X=-120, Y=-169
(-480, -476, -676)  n= 4, X=-120, Y=-169
(-360, -357, -507)  n= 3, X=-120, Y=-169
(-240, -238, -338)  n= 2, X=-120, Y=-169
(-120, -119, -169)  n= 1, X=-120, Y=-169
(-105, -100, -145)  n= 5, X= -21, Y= -29

Edited on May 10, 2008, 12:54 am
  Posted by Dej Mar on 2008-05-08 23:45:38

Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (1)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (6)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information