All about flooble | fun stuff | Get a free chatterbox | Free JavaScript | Avatars    
perplexus dot info

Home > Numbers
A Tri Star Issue (Posted on 2008-06-01) Difficulty: 3 of 5
The letters, A to L, within this star represent intersections of unique pairings of its 6 lines, and α, β, γ, δ, ε and ζ are sums of intersections defined as:
α = A + D + G + K     β = E + G + J + L    γ = K + J + I + H
δ = L + I + F + B     ε = H + F + C + A    ζ = B + C + D + E

           A α
          / \
  ζ  B---C---D---E  β
      \ /     \ /
       F       G
      / \     / \
  ε  H---I---J---K  γ
          \ /
           L  δ

Assign values from 1 to 12 to each of the locations A to L such that each sum is an element of an arithmetic progression with an arithmetic difference of two (2) but not necessarily as adjacent vertex values.

Secondly, attempt the same task but with a difference of four (4) as the outcome.

And for a tease... can you offer a solution if all such vertex sums are equal, ie, 26?

Note:
Discounting rotations and reflections, more than one possibility exists for each of the first two tasks.

See The Solution Submitted by brianjn    
Rating: 4.0000 (2 votes)

Comments: ( Back to comment list | You must be logged in to post comments.)
Question Can we prove? | Comment 16 of 17 |

Coincidence? I donīt think so.

Can we prove that in any existent solution the sum of the 6 numbers in the vertices (and, consequentely the sum of the internal 6) must yield an EVEN number? 


  Posted by pcbouhid on 2008-06-03 14:51:29
Please log in:
Login:
Password:
Remember me:
Sign up! | Forgot password


Search:
Search body:
Forums (0)
Newest Problems
Random Problem
FAQ | About This Site
Site Statistics
New Comments (3)
Unsolved Problems
Top Rated Problems
This month's top
Most Commented On

Chatterbox:
Copyright © 2002 - 2024 by Animus Pactum Consulting. All rights reserved. Privacy Information